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Microstructure and velocity of field-driven Ising interfaces moving under a soft stochastic dynamic
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We present theoretical and dynamic Monte Carlo simulation results for the mobility and microscopic struc-
ture of (1+1)-dimensional Ising interfaces moving far from equilibrium in an applied field under a single-
spin-flip “soft” stochastic dynamic. The soft dynamic is characterized by the property that the effects of
changes in field energy and interaction energy factorize in the transition rate, in contrast to the nonfactorizing
nature of the traditional Glauber and Metropolis ratdsard” dynamics). This work extends our previous
studies of the Ising model with a hard dynamic and the unrestricted solid-onS@i§ model with soft and
hard dynamics|[P. A. Rikvold and M. Kolesik, J. Stat. Phy&00, 377 (2000; J. Phys. A35, L117 (2002);

Phys. Rev. E66, 066116 (2002.] The Ising model with soft dynamics is found to have closely similar
properties to the SOS model with the same dynamic. In particular, the local interface widthalaigerge

with increasing field as it does for hard dynamics. The skewness of the interface at nonzero field is very weak
and has the opposite sign of that obtained with hard dynamics.

DOI: 10.1103/PhysRevE.67.066113

I. INTRODUCTION

PACS nuner 05.10.Ln, 68.35.Ct, 75.60.Jk, 68.43.Jk

face is introduced by fixing, ,= + 1 and—1 for large nega-
tive and positivey, respectively. We takkl=0, such that the

The structure and dynamics of surfaces and interfaces signterface on average moves in the posityirection.(This
nificantly influence a host of material properties. Conseimodel is equivalent to a lattice-gas model with local occupa-
quently, an enormous amount of work has been devoted ttion variablesc, , {0,1}, see details in Ref.5].) The dif-

the study of moving and growing interfacgk 2]. However,

ference between the two interface types is that the Ising in-

despite the fact that many important interface propertiesterface allows overhangs and bubbles, while these are
such as mobility and chemical activity, are largely deter-forbidden in the SOS interface. However, at low and inter-
mined by themicroscopicinterface structure, the bulk of this mediate temperatures overhangs and bubbles in an Ising in-

effort has concentrated on large-scale scaling properties.

terface are rare, and a short interface segment is likely to be

Since the detailed physical mechanisms of the interfacendistinguishable from an SOS interface. A typical SOS in-
motion are most often unknown, it is useful to model theterface is illustrated in Fig. 1.
dynamic as a stochastic process defined by a set of transition In addition to bubbles that are generatgdhe interface

probabilities. It is therefore important to gain better insight

into how the driving force(such as an applied magnetic or 3
electric field or a chemical-potential differenaaay alter the 01— 00—
microscopic interface structure for different stochastic dy- Y 2 ,
namics. Recently, we have studied the influence of the sto- 10— | 21+ | 10- |
chastic dynamics on the microscopic structure and mobility 1 ;
of Ising and solid-on-solidSOS9 interfaces that move under oS 11- | 20+ | 11— 01-
two types of Glauber dynamid8-5]. Both Ising and SOS 0 B [ A I B o
interfaces are described by the Ising Hamiltonian 1 01+ 11+ | 11= ¢ 11- ] 21+ | 10- ; 01—
i 01+ 1 01+ 10+ | 21— | 11+
H=— E Sx,y(JxSx+ 1,y+Jysx,y+l+ H), 1 2
X,y 00+ 01+
-3 : :

wheres, ,=*+1 is an Ising spin at lattice sitex(y), =,
runs over all sites on a square lattice, ahdand J, are
ferromagnetic interactions in theandy directions, respec-
tively. The quantityH is the applied “field,” and the inter-

*Electronic address: rikvold@csit.fsu.edu
"Electronic address: kolesik@acms.arizona.edu

-4 3 2 -1 0 1 2 3 4

FIG. 1. A short segment of an SOS interface h(x) between a
positively magnetized phase below and a negative phase above. The
step heights aré(x) =h(x+1/2)—h(x—1/2). Interface sites rep-
resentative of the different SOS spin clas&ee Tables | and )llare
marked with the notatiorjks explained in the text. Sites in the
uniform bulk phases are 80 and 00+. From Ref.[5].
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TABLE I. The spin classes in the anisotropic square-lattice Ising model. First column: the class labels
jks. Second column: the total energy per sg(jks) relative to the state with all spins parallel akd
=0, Eg=—2(J«+Jy). Third column: the change in the field energy resulting from spin reversal $rton
—s, AEy(jks). Fourth column: the corresponding change in the interaction enkekyyjks). In columns
two and three, the uppélower) sign corresponds te=—1 (s=+1). The first three classes have nonzero
populations in the SOS approximation, and flipping a spin in any of them preserves the SOS configuration.
The two classes marked 1 also have nonzero populations in the SOS approximation, but flipping a spin in any
of them may produce an overhang or a bubble. The two classes marked  are not populated in the SOS
approximation, but flipping a spin in any of them may produce an SOS configuration. The two classes marked
* correspond to a bulk spin that is either parallel or antiparallel to all its neighbors. Flipping a spin in class
22s yields a spin in class 00s. The transition probabilities for all classes exceps (flom which transitions
are forbidden with the dynamic used hesage given by Eq(3).

Class,jks E(jks)—Eq AEy(jks) AE;(jks)
01s *H+2J, F2H +4J,
11s EH+2(3,+Jy) F2H 0
21s TH+2(23,+7,) F2H -4,

10s t *H+2J, +2H +4J,
20s t +H+4J, F2H —4(3,—J,)
12s ¢t TH+2(3+2J,) F2H -4,
02s t *H+4], F2H +4(3,—Jy)
22s * TH+4(3+Jy) F2H —4(3+Jy)
00s * +H F2H +4(3+Jy)

by pinching off of protrusions or indentations, Ising modelsematical convenience, the “soft Glauber dynamiet] in

in an applied field can also contain bubbles created by howhich each of the two parts has the Glauber form
mogeneous nucleation in the bulk phapés 8]. While such

bubbles destroy the integrity of the interface at very strong ~ WsglSyy— —Syy) =[1+ePAER] "1 [1+efAE] 71 (3)
fields, they have only a minor influence on the mobility at

moderate field$7,8]. In this paper, just as in Ref3], we  Soft dynamics(usually with the field part proportional to a
exclude such nucleated bubbles by setting the transition raféetropolis transition rat¢11,12]) are often used for lattice-
equal to O for sites that have no neighbors with the oppositgas simulations, in which the field term corresponds to the
spin direction. As a consequence, the bulk phases far frorantropic part of a chemical-potential difference. In Réf,

the interface are uniform. we showed, in agreement with a theoretical prediction in

The interface dynamic is defined by the set of single-spirRef. [3], that the soft dynamic leads to a microscopic SOS
transition probabilitiesW(s, ,— —Sy), and time is mea- interface structure that is identical to the equilibrium inter-
sured in units of attempted Monte CarllMC) updates per face in zero field, irrespective of the value of the applied
site (MC steps per site, or MC3SThe first one of the dy- field. This is in contrast with the result for hard dynanfis$
namics used in the aforementioned studigg] is the stan-  which lead to an intrinsic interface width that increases dra-
dard discrete-time Glauber dynamic with the transition prob-matically with the field. The purpose of the present paper is
ability [9] to study the effects of the soft Glauber dynamic for an Ising

interface (which may contain bubbles and overhangsd
@) compare those with the cases of an Ising interface with the

standardhard Glauber dynami¢3] and SOS interfaces with

the soft Glauber dynamigt] and hard Glauber dynamjé].
whereAE is the total energy change that would result from  The rest of this paper is organized as follows. Theoretical
the transition. AlthoughAE can be written as a sum of the results for the interface structure and velocity are surveyed in
energy changdE;, due to the change in the interaction part Sec. Il. Comparisons with extensive dynamic MC simula-
of the Hamiltonian, and\Ey;, due to the change in the field tions are given in Sec. Ill, with results for the interface ve-
energy, this transition rate itself cannot be factorized into docity in Sec. Il A and for the interface structure and skew-
product of parts that depend only &k ; andAE,, respec- ness in Sec. Il B. Our conclusions are drawn in Sec. IV.
tively. This dynamic is therefore classified as “hard” in the
literature on driven particle systerh0].

The second type of dynamics is defined by transition
probabilities that factorize into a part that depends only on With the Ising Hamiltonian there is only a finite humber
AE; and one that depends only &,,. Such dynamics are of different values ofAE, and the spins can therefore be
known as “soft” [10]. In our recent study of a driven SOS divided into classef13—15, labeled by the spin valugand
interface with soft dynamics, we used, for reasons of maththe number of broken bonds between the spin and its nearest

WG( Sxy— sx,y) =[1+ eﬁAE] - 1!

II. INTERFACE STRUCTURE AND VELOCITY
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TABLE Il. The mean populations for the spin classes that have nonzero populations in the SOS approximation, with the corresponding
contributions to the interface velocity under the soft Glauber dynamic. First column: the class jlkeheSecond column: the mean
spin-class populations for general tilt angle with coshy(¢) from Eq. (5). Third and fourth columns: the spin-class populations dor
=0 [using y(0)=0] and ¢=45° (using Eq.(8) for exd¥(45°)]), respectively. Fifth column: the contributions to the mean interface
velocity in they direction from spins in classg&— andjk+, Eq. (10), using the soft Glauber dynamic, EG@).

Class,jks (n(jks)), general¢g (n(jks)), ¢=0 (n(jks)), ¢p=45° (vy(jk))
01s 1—2X coshy(¢)+X? 1 1 tanh(BH)
(1-X3)? (1+X)? 2(1+X?) 1+
11s 2X[(1+X?)coshy( p)—2X] 2X 1 tanh(8H)
(1-X3)? (L+X)? 2 2
21s X[1—2X coshy(¢)+X?] x? X? tanh(8H)
(1-X2)2 (1+X)? 2(1+X%) 1+e %%
10t 2X% |2 cosiy(¢p)—1—2X coshy(¢p)+X2 2X?(1+2X) 1+2X%+3%4 tanh(BH)
1-X? 1—2X coshy(¢p)+X2 (1—X?)(1+X)? 2(1-X% 1+e*Py
X[1—2X coshy(¢)+X?]
(1-X3)?
X4 1—2X coshy(¢h) +X2] NG NG _tant(BH)
20st —_— 1+e 483
(1-X?)3 (1—X?)(1+X)? 2(1-X4
neighbors in thex andy direction,j andk, respectively. The +o 1-X2
18 different Ising spin classes are denotedjles with j,k Z(p)= > Xlder(#o— G
€{0,1,2. They are listed in Table |, and subsets are also #==o 1-2Xcoshy(¢)+X

listed in Table Il and shown in Fig. 1.
The Burton-Cabrera-Frank SOS mod&b] considers an  (See details in Refd.3,5].) Simple results are obtained for
interface in a lattice gas d=13 Ising system on a square ¢=0, which yieldsy(0)=0 and
lattice of unit lattice constant as a single-valued integer func-
tion h(x) of the x coordinate, with step$(x)=h(x+ 1/2) Z(0)=(1+X)/(1-X), (7)
—h(x—1/2) at integer values of. A typical SOS interface
configuration is shown in Fig. 1. The heights of the indi- and for ¢=45°, which yields
vidual steps are assumed to be statistically independent and,
in the case of a flat interface, identically distributed. These e?*)=(1+X?)/2X €))
assumptions are exact in equilibriufh6]. The step-height
probability density functiodPDF is given by the interaction and
energy corresponding to thé(x)| brokenJ, bonds between
spins in the columns centered at1/2) and &+ 1/2) as Z(45°)=2(1+X?)/(1—X?). 9)

p[ 8(x)]1=Z(¢p) ~1XI2Xgr(#) 309, (4)  For soft dynamics(but not for hard dynamigs X remains
independent oH when the system is driven away from equi-

The Boltzmann factoX=e~ 2#% determines the width of the librium [3-5]. _ _

PDF, and the Lagrange multiplier($) maintains the mean  The mean spin-class populatiori®(jks)), are all ob-

step height at an-independent valué,5(x))=tan¢, where tained from the product of the independent PDFs &0x)

¢ is the overall angle between the interface andxtraxis. ~ and 8(x+1). Symmetry ofp[ 6(x)] under the transforma-

The Lagrange multiplier is given by tion (x,¢,8)—(—X,—¢,—0) ensures that(n(jk—))
=(n(jk+)) for all j andk. Numerical results illustrating the

(1+X2)tand+ [ (1— X2)2tarf g+ 4X2]12 breakdown of this up-down symmetry for largje| are dis-

e¥(d) = . (5) cussed in Sec. Il B. As discussed in RES], calculation of
2X(1+tane) the individual class populations is straightforward but some-
what tedious, especially for nonzeda The final results are
The partition function for the step heigh{x) is summarized in Table II.
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Whenever a spin flips from-1 to + 1, the corresponding
column of the interface advances by one lattice constant in
they direction. Conversely, the column recedes by one lattice
constant when a spin flips from1 to — 1. The correspond-
ing energy changes are given in the third and fourth columns
of Table I. Since the spin-class populations on both sides of
the interface are equal in this approximation, the contribution
to the mean velocity in the direction from sites in the
classegk— andjk+ becomes

(vy(jk))=W(BAE(jk—))—=W(BAE(jk+)). (10

The results corresponding to the soft Glauber transition prob- HiJ
abilities used here, Eq3), are listed in the last column of

Table 1. The mean propagation velocity perpendicular to the,
interface becomes

FIG. 2. The average stationary normal interface velo¢ity)

own vsH for ¢=0. The MC results are shown as data points and

the theoretical predictions as solid curves. From below to above, the

temperatures aré/T.=0.2, 0.4, 0.6, 0.8, and 1.0.

(v (TH,¢)=cosg 2, (n(jks))(vy(jk), (1D
I,

A. Interface velocities

where the sum runs over the classes included in Table Il. First, we compare the simulated interface velocities with
While the general result is cumbersome if written out in de-the analytical approximation, E¢11). Figure 2 shows the
tail, using the fact thag™##x=X? for the soft Glauber dy- normal velocity versusi for ¢=0 and a range of tempera-
namic[3-5], we obtain relatively compact formulas for the tures up tol;. There is excellent agreement between the MC

special cases ap=0 andp=45°: results and the theory for temperatures belowl 9.8
The dependence of the normal velocity on the tilt angle
X 2(1+2X) is shown in Fig. 3 for several values Hf J between 0.1 and
(vi(T,H,0)=X 1 (1+X)%(1—-X?) | 1+e*Py 3.0. AtT=0.2T,, the velocity increases wit in agreement
X2 0.25 | (@) ’
+———-——| tanh(BH 12
1+ X2e*Ply BH) 12 oz |
and
A 015
7
(01 (TH.45%) 1+ 2X? . 1 |1+2X2+3x4 01 |
U 1 1 = A
. 2 (1+X)2 1-X4 1+e%PYy
0.05 |
X4 tanh( BH)
+ A . (13 0¢
1+X2%e*%y || 2|2
IIl. COMPARISON WITH MONTE CARLO SIMULATIONS 025 [
We have compared the analytical estimates of the propa- E
gation velocities and spin-class populations developed above 02
with MC simulations of the same model fdg=J,=J. The 045
details of our implementation of the discrete-timéold way g_. ’
rejection-free MC algorithnj13] are described in Ref3]. o1
By keeping only the interface sites in memory, the algorithm '
is not subject to size limitations in thedirection, enabling 0.05 [
simulations for arbitrarily long times. e e
Our numerical results are based on simulations ith 0 . . . .
=10000 and$ between 0 and 45° for several temperatures 0 o2 °-4t 06 o8 1
belowT,. [T.= —2J/In(y2—1)~2.269 is the critical tem- ane
perature for the isotropic, square-lattice Ising mddél.] In FIG. 3. The average stationary normal interface veloity)

order to ensure stationarity, we ran the simulation for 10 00@hown vs tanp for (from below to aboveH/J=0.1, 0.5, 1.0, 1.5,
n-fold way updates per updatable sgldPS before taking 2.0, 2.5, and 3.0. The MC results are shown as data points and the
any measurements, and the results were averaged owvkeoretical predictions as solid curvega) T=0.2T.. (b) T
200000 UP4q18§]. =0.6T,.
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FIG. 4. The average stationary normal interface velogity)
shown vsT at ¢=0 for (from below to aboveH/J=0.1, 0.5, 1.0, 0.006
1.5, 2.0, 2.5, and 3.0. The MC results are shown as data points ar (b)
the theoretical predictions as solid curves. 0.005}ss2214. R L LT VY VOO
QO-OO4 fhesasscsnsnsanag
with the polynuclear growth modg6,19,2q at small angles .2 0.003
and the single-step model for larger andles4,21,22[Fig. <>
3(a)]. At T=0.6T,, on the other hand, the velocity is nearly <= 0.002 v eseancceasenns
isotropic, with a weak increase with for the strongest fields 0.001}:°°° paoo®?
[Fig. 3b)]. For the lowest temperature, the agreement be . R R
tween the simulations and the analytical results is exceller 0 fleeiesesugggaaacagy
everywhere. For the higher temperature, it is also reasonabl 0 05 1 1.5 2 25 3
but better for weak than for strong fields. H/J
The temperature dependence of the normal interface ve
locity is shown in Fig. 4 for several values biffJ between 08—
0.1 and 3.0. The agreement between the simulations and ti (C)

analytical results is excellent except for combinations of higl
temperatures and strong fields. In contrast to the results fc 0.6
hard dynamicgsee Fig. 5 of Ref[3] for Ising interfaces and a
Fig. 8 of Ref.[5] for SOS interfaces the velocity goes to =¥ (. 4
zero atT=0 for all values ofH, not just forH/J<2. This g
result agrees with our finding for the SOS model with soft™>"
dynamics[4]. As predicted by the theoretical results in Ref.

[3], there is thuso discontinuity in the interface velocity at

T=0 andH/J=2 for soft dynamics. 0 AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

0 05 1 15 2 25 3

FIG. 5. Mean stationary cIasI-Is/‘p,opuIati((mE{jks)) shown vsH
A closer look at the performance of the mean-field ap-at ¢=0 and T=0.6T,. Solid lines correspond to the theoretical
proximation for the interface structure is provided by thepredictions, while filled symbols denose= +1 and empty symbols
mean spin-class populations. The analytical predictions fo(in most cases hidden by the corresponding filled symtigsote
the class populations are based on the assumption that diffeg=—1. (a) The ten SOS-compatible classes, from top to bottom
ent steps are statistically independent. A comparison of thels, 11s, 10s, 21s, and 2@. (b) The six classes with two broken
simulation results with the analytical predictions thereforebonds, which have zero populations in the SOS approximatian, 12
gives a way of testing this assumption. (triangles, 22s (squarel and 02 (diamonds. (c) From above to
The ten mean class populations that have nonzero popipelow are shown the aggregate populations of classes with ose (01
lations in the SOS approximation;n(01s)), (n(11s)), and 16), two (11s, 20s, and 03), three (2% and 13), and four
(n(10s)), (n(21s)), and(n(20s)) with s=+1 are shown (22s) broken bonds.
versusH in Fig. 5(a) for =0 andT=0.6T. Filled symbols
represens=+1, while empty symbolgalmost completely by the nonzero populations in the classes with two broken
hidden behind the corresponding filled symbaolspresens  bonds(n(12s)), (n(22s)), and({n(02s)), which are shown
=—1. The class populations are practically independent ofn Fig. 5(b). These populations are only of the order of 0
H, in agreement with the theoretical prediction for the softabout two orders of magnitude less than for the hard Glauber
dynamic[3,4], and in contrast to the result for the Ising dynamic(see Fig. o) of Ref.[3]), and they show significant
model with hard Glauber dynamidsee Fig. 7a) of Ref.  differences between the two spin valusse below. Figure
[3]). Deviations from the SOS approximation are indicated5(c) shows the combined populations in classes with one,

vvvvvvvvvvvvvvvvvvvvvvvvvvvvv

B. Spin-class populations and skewness
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two, three, and four broken bonds, respectively. The results —~ 0

are dominated by the SOS-compatible classes and show § [T . (a)
good agreement between simulations and theory. =2 —0.2 N Tt it iaaa.
The skewness between the spin populations on the leading % —04 ‘.
and trailing edges of the interface are a consequence of short-%2 ) .
range correlations between neighboring steps, and it is quite ~: —(.6 R
commonly observed in driven interfaces. This is the case, é ‘.
even when thdéong-rangecorrelations vanish as they do for ~-0.8 fa
interfaces in the Kardar-Parisi-Zhai§PZ) dynamic univer- -1 el X
sality class[1,23], to which the present model belongs. % etaliL,
Skewness has also been observed in several other SOS-typi™ —1.2
models[24-26. The correlations associated with the skew- 0 0.5 1 1.5 2 2.5 3
ness generally lead to a broadening of protrusions on the H/J
leading edg€“hilltops” ), while those on the trailing edge
(“valley bottoms”) are sharpened24], or the other way 0.1
around[26]. In terms of spin-class populations, the former 2 (b) N
corresponds to (n(21-))>(n(21+)) and (n(11+)) 2 0.08 Lat *
>(n(11-)). The relative skewness can therefore be quanti- = Lt
fied by the two functions &: 0.06 Laasntt
(n(21-))=(n(21+)) ) 20.04 . T
p= y - a Lanet® -
(n(21-))+(n(21+)) S 002 R
introduced by Neergaard and den Ni4], and < 0 et '
~(n(11+))—(n(11-)) s 0 05 1 1_11/3 2 25 3
(AT + (1)) (15
These two skewness parameters for the current system are & 0.1 ahda,
shown together versud in Fig. 6(@). The skewness is very g 0.08 N ‘AA (C)
weak, but it is not zero in contrast to the SOS model with = L .,
soft Glauber dynami¢4]. Both these skewness parameters > 0.06 . .,
have the opposite sign and are about two orders of magni- 3 . R .,
tude smaller than in the Ising model with the hard Glauber § 0.04 . " " LT S
dynamic[3] [Fig. 6b)] and in the SOS model with the same 8 ) . " - "a)
hard dynamid5] [Fig. 6(c)]. é 0.02 . "
The skewness parametgrsand e depend on spin classes s m"
that have nonzero populations in the SOS picture, and they 0 Lahan”
can therefore be applied to both Ising and SOS interfaces. In 0 0.5 1 1.5 2 2.5 3
the Ising case, however, much more pronounced differences H/J
are seen in the populations of those classes that are not popu-
lated in the SOS moddkee Fig. B)]. For Ising models, FIG. 6. The two relative skewness parametergriangles and
these classes can be used to define further skewness parasi(squarey defined in Eqs(14) and(15), respectively shown vkl
eters, such as for =0 atT=0.6T.. () The skewness parameters multiplied by
100 for the Ising model with soft Glauber dynamics, discussed in
(n(22—-))—(n(22+)) this paper(b) The skewness parametgreo multiplication for the
K= (n(22—=))+(n(22+)) (16) Ising model with hard Glauber dynamics, discussed in F8f.(c)

The skewness parametefiso multiplication for the SOS model
évith hard Glauber dynamics, from R¢b]. Note the different sign
and the scale difference of two orders of magnitude between the
5oft dynamic shown irfa) and the hard dynamics shown (ip) and

)(/c).

Here class 22 represents isolated bubbles of the metastabl
phase that persist as a “wake” behind the moving interface
while 22+ corresponds to a “bow wave” of bubbles of the
stable phase in front of the interface, which are created b
pinching-off of protrusions. Although the total density of
such bubbles is about two orders of magnitude smaller with

the soft dynamic studied here than with hard dynarnicsn- In this paper, we have continued our study of the depen-
pare Fig. b) with Fig. 7(b) of Ref.[3]), the relative asym- dence of the local structure of driven interfaces on the ap-
metry parameterg are comparable, as shown in Fig. 7. Not plied field and temperature and on the form of the stochastic
surprisingly, for strong fields the entire bubble population isdynamics under which they moy8-5|. The local interface
found in the wake, yieldinge<1 in this limit. structure is of interest because it is this, rather than the large-

IV. CONCLUSION
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1 EEUVRTII0i000¢22 1 skewness for the Ising model in nonzero field is not exactly
R .,.0°" zero, as it is for the SOS model. However, the skewness
08 1 o . 1 parametersp and e, which are based on SOS-compatible
.’ ..' spin classes, are about two orders of magnitude smaller and
06 . ® 1 have the opposite sign than what is seen for the hard dynam-
w . o ics. In contrast, the relative asymmetry in the populations of
04t ,,° . 1 bubbles behind and in front of the interfatghich do not
+ Hard Glauber dynamic .
. o Soft Glauber dynamic occur in SOS modelscan be expressed by the skewness
02t .’ 1 parameter and is comparable for the two dynamics. How-
M ever, theabsolutebubble density is about two orders of mag-
0 : : . 3 nitude smaller with the soft dynamics than with the hard

dynamics. Although a successful mean-field theory for the
interface mobility of different models and under different
FIG. 7. The relative skewness parameteshown vsH for ¢  Stochastic dynamics was developed in Rg#s5], a compa-
=0 atT=0.6T,. It measures the asymmetry between the populafable theory that predicts the skewness is still not available.
tions of bubbles behind and in front of the Ising interface. Two important conclusions can be drawn from our stud-
ies. First, the strong differences between hard and soft dy-
namics make it evident that great care must be taken in for-

scale scaling behavior, which determines such important in- . ! . . ;
9 P mulating and interpreting stochastic models of dynamic

terface properties as mobility and chemical reactivity. In par- stems. Second. experimental observation of the field and
ticular, we studied the differences between interfaces movin y : » EXp . o )
emperature dependences of interface mobility and local in-

under soft stochastic dynamics, in which the influences of erface structure could contribute significantly in devisin
changes in the field energy and the interaction energy factoF— 9 y 9

ize in the transition probabilities, ariard dynamics, which correct stochastic models of nonequilibrium physical phe-
do not possess such a factorization property. nomena.
We find that the results for the Ising model with the soft
Glauber dynamic, which is the main topic of this study, differ
relatively little from the SOS model with soft dynamics stud- P.A.R. appreciates the hospitality of the Department of
ied in Ref.[4]. In particular, the local interface width does Physics, Virginia Polytechnic Institute and State University.
not diverge with increasindd, as it does for both the Ising The research was supported in part by National Science
[3] and SOY5] models with hard dynamics. As a result, the Foundation Grant Nos. DMR-9981815, DMR-0120310, and
soft dynamics do not produce the discontinuity in the inter-DMR-0240078, and by Florida State University through
face velocity atH/J=2 andT=0 that is seen for hard dy- the Center for Materials Research and Technology and
namics. The main qualitative difference between the Isinghe School of Computational Science and Information
and SOS models with soft dynamics is that the interfacelechnology.
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