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Microstructure and velocity of field-driven Ising interfaces moving under a soft stochastic dynamic
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We present theoretical and dynamic Monte Carlo simulation results for the mobility and microscopic struc-
ture of (111)-dimensional Ising interfaces moving far from equilibrium in an applied field under a single-
spin-flip ‘‘soft’’ stochastic dynamic. The soft dynamic is characterized by the property that the effects of
changes in field energy and interaction energy factorize in the transition rate, in contrast to the nonfactorizing
nature of the traditional Glauber and Metropolis rates~‘‘hard’’ dynamics!. This work extends our previous
studies of the Ising model with a hard dynamic and the unrestricted solid-on-solid~SOS! model with soft and
hard dynamics.@P. A. Rikvold and M. Kolesik, J. Stat. Phys.100, 377 ~2000!; J. Phys. A35, L117 ~2002!;
Phys. Rev. E66, 066116 ~2002!.# The Ising model with soft dynamics is found to have closely similar
properties to the SOS model with the same dynamic. In particular, the local interface width doesnot diverge
with increasing field as it does for hard dynamics. The skewness of the interface at nonzero field is very weak
and has the opposite sign of that obtained with hard dynamics.
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I. INTRODUCTION

The structure and dynamics of surfaces and interfaces
nificantly influence a host of material properties. Con
quently, an enormous amount of work has been devote
the study of moving and growing interfaces@1,2#. However,
despite the fact that many important interface propert
such as mobility and chemical activity, are largely det
mined by themicroscopicinterface structure, the bulk of thi
effort has concentrated on large-scale scaling properties

Since the detailed physical mechanisms of the interf
motion are most often unknown, it is useful to model t
dynamic as a stochastic process defined by a set of trans
probabilities. It is therefore important to gain better insig
into how the driving force~such as an applied magnetic
electric field or a chemical-potential difference! may alter the
microscopic interface structure for different stochastic d
namics. Recently, we have studied the influence of the
chastic dynamics on the microscopic structure and mob
of Ising and solid-on-solid~SOS! interfaces that move unde
two types of Glauber dynamics@3–5#. Both Ising and SOS
interfaces are described by the Ising Hamiltonian

H52(
x,y

sx,y~Jxsx11,y1Jysx,y111H !, ~1!

wheresx,y561 is an Ising spin at lattice site (x,y), (x,y
runs over all sites on a square lattice, andJx and Jy are
ferromagnetic interactions in thex and y directions, respec-
tively. The quantityH is the applied ‘‘field,’’ and the inter-
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face is introduced by fixingsx,y511 and21 for large nega-
tive and positivey, respectively. We takeH>0, such that the
interface on average moves in the positivey direction.~This
model is equivalent to a lattice-gas model with local occu
tion variablescx,yP$0,1%, see details in Ref.@5#.! The dif-
ference between the two interface types is that the Ising
terface allows overhangs and bubbles, while these
forbidden in the SOS interface. However, at low and int
mediate temperatures overhangs and bubbles in an Isin
terface are rare, and a short interface segment is likely to
indistinguishable from an SOS interface. A typical SOS
terface is illustrated in Fig. 1.

In addition to bubbles that are generatedat the interface

FIG. 1. A short segment of an SOS interfacey5h(x) between a
positively magnetized phase below and a negative phase above
step heights ared(x)5h(x11/2)2h(x21/2). Interface sites rep-
resentative of the different SOS spin classes~see Tables I and II! are
marked with the notationjks explained in the text. Sites in the
uniform bulk phases are 002 and 001. From Ref.@5#.
©2003 The American Physical Society13-1
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TABLE I. The spin classes in the anisotropic square-lattice Ising model. First column: the class
jks. Second column: the total energy per spinE( jks) relative to the state with all spins parallel andH
50, E0522(Jx1Jy). Third column: the change in the field energy resulting from spin reversal froms to
2s, DEH( jks). Fourth column: the corresponding change in the interaction energyDEJ( jks). In columns
two and three, the upper~lower! sign corresponds tos521 (s511). The first three classes have nonze
populations in the SOS approximation, and flipping a spin in any of them preserves the SOS configu
The two classes marked † also have nonzero populations in the SOS approximation, but flipping a spi
of them may produce an overhang or a bubble. The two classes marked ‡ are not populated in t
approximation, but flipping a spin in any of them may produce an SOS configuration. The two classes m
* correspond to a bulk spin that is either parallel or antiparallel to all its neighbors. Flipping a spin in
22s yields a spin in class 002s. The transition probabilities for all classes except 00s ~from which transitions
are forbidden with the dynamic used here! are given by Eq.~3!.

Class,jks E( jks)2E0 DEH( jks) DEJ( jks)

01s 6H12Jy 72H 14Jx

11s 6H12(Jx1Jy) 72H 0
21s 6H12(2Jx1Jy) 72H 24Jx

10s † 6H12Jx 72H 14Jy

20s † 6H14Jx 72H 24(Jx2Jy)
12s ‡ 6H12(Jx12Jy) 72H 24Jy

02s ‡ 6H14Jy 72H 14(Jx2Jy)
22s * 6H14(Jx1Jy) 72H 24(Jx1Jy)
00s * 6H 72H 14(Jx1Jy)
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by pinching off of protrusions or indentations, Ising mode
in an applied field can also contain bubbles created by
mogeneous nucleation in the bulk phases@6–8#. While such
bubbles destroy the integrity of the interface at very stro
fields, they have only a minor influence on the mobility
moderate fields@7,8#. In this paper, just as in Ref.@3#, we
exclude such nucleated bubbles by setting the transition
equal to 0 for sites that have no neighbors with the oppo
spin direction. As a consequence, the bulk phases far f
the interface are uniform.

The interface dynamic is defined by the set of single-s
transition probabilitiesW(sx,y→2sx,y), and time is mea-
sured in units of attempted Monte Carlo~MC! updates per
site ~MC steps per site, or MCSS!. The first one of the dy-
namics used in the aforementioned studies@3,4# is the stan-
dard discrete-time Glauber dynamic with the transition pr
ability @9#

WG~sx,y→2sx,y!5@11ebDE#21, ~2!

whereDE is the total energy change that would result fro
the transition. AlthoughDE can be written as a sum of th
energy changeDEJ , due to the change in the interaction pa
of the Hamiltonian, andDEH , due to the change in the fiel
energy, this transition rate itself cannot be factorized int
product of parts that depend only onDEJ andDEH , respec-
tively. This dynamic is therefore classified as ‘‘hard’’ in th
literature on driven particle systems@10#.

The second type of dynamics is defined by transit
probabilities that factorize into a part that depends only
DEJ and one that depends only onDEH . Such dynamics are
known as ‘‘soft’’ @10#. In our recent study of a driven SO
interface with soft dynamics, we used, for reasons of ma
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ematical convenience, the ‘‘soft Glauber dynamic’’@4# in
which each of the two parts has the Glauber form

WSG~sx,y→2sx,y!5@11ebDEH#21 @11ebDEJ#21. ~3!

Soft dynamics~usually with the field part proportional to
Metropolis transition rate@11,12#! are often used for lattice
gas simulations, in which the field term corresponds to
entropic part of a chemical-potential difference. In Ref.@4#,
we showed, in agreement with a theoretical prediction
Ref. @3#, that the soft dynamic leads to a microscopic SO
interface structure that is identical to the equilibrium inte
face in zero field, irrespective of the value of the appli
field. This is in contrast with the result for hard dynamics@5#,
which lead to an intrinsic interface width that increases d
matically with the field. The purpose of the present pape
to study the effects of the soft Glauber dynamic for an Is
interface ~which may contain bubbles and overhangs! and
compare those with the cases of an Ising interface with
standard~hard! Glauber dynamic@3# and SOS interfaces with
the soft Glauber dynamic@4# and hard Glauber dynamic@5#.

The rest of this paper is organized as follows. Theoreti
results for the interface structure and velocity are surveye
Sec. II. Comparisons with extensive dynamic MC simu
tions are given in Sec. III, with results for the interface v
locity in Sec. III A and for the interface structure and ske
ness in Sec. III B. Our conclusions are drawn in Sec. IV.

II. INTERFACE STRUCTURE AND VELOCITY

With the Ising Hamiltonian there is only a finite numb
of different values ofDE, and the spins can therefore b
divided into classes@13–15#, labeled by the spin values and
the number of broken bonds between the spin and its nea
3-2
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TABLE II. The mean populations for the spin classes that have nonzero populations in the SOS approximation, with the corre
contributions to the interface velocity under the soft Glauber dynamic. First column: the class labelsjks. Second column: the mea
spin-class populations for general tilt anglef, with coshg(f) from Eq. ~5!. Third and fourth columns: the spin-class populations forf
50 @using g(0)50] and f545° „using Eq.~8! for exp@g(45°)#…, respectively. Fifth column: the contributions to the mean interfa
velocity in they direction from spins in classesjk2 and jk1, Eq. ~10!, using the soft Glauber dynamic, Eq.~3!.

Class,jks ^n( jks)&, generalf ^n( jks)&, f50 ^n( jks)&, f545° ^vy( jk)&

01s 122X coshg~f!1X2

~12X2!2

1

~11X!2

1

2~11X2!

tanh~bH!

11e4bJx

11s 2X@~11X2!coshg~f!22X#

~12X2!2

2X

~11X!2

1

2

tanh~bH!

2

21s X2@122X coshg~f!1X2#

~12X2!2

X2

~11X!2

X2

2(11X2)
tanh~bH!

11e24bJx

10s† 2X2

12X2 H2 cosh2g~f!2122X coshg~f!1X2

122X coshg~f!1X2

2
X2@122X coshg~f!1X2#

~12X2!2 J
2X2~112X!

~12X2!~11X!2

112X213X4

2~12X4!

tanh~bH!

11e4bJy

20s†
X4@122X coshg~f!1X2#

~12X2!3

X4

~12X2!~11X!2

X4

2~12X4!

tanh~bH!

11e24b(Jx2Jy)
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neighbors in thex andy direction, j andk, respectively. The
18 different Ising spin classes are denoted asjks with j ,k
P$0,1,2%. They are listed in Table I, and subsets are a
listed in Table II and shown in Fig. 1.

The Burton-Cabrera-Frank SOS model@16# considers an
interface in a lattice gas orS5 1

2 Ising system on a squar
lattice of unit lattice constant as a single-valued integer fu
tion h(x) of the x coordinate, with stepsd(x)5h(x11/2)
2h(x21/2) at integer values ofx. A typical SOS interface
configuration is shown in Fig. 1. The heights of the ind
vidual steps are assumed to be statistically independent
in the case of a flat interface, identically distributed. The
assumptions are exact in equilibrium@16#. The step-height
probability density function~PDF! is given by the interaction
energy corresponding to theud(x)u brokenJx bonds between
spins in the columns centered at (x21/2) and (x11/2) as

p@d~x!#5Z~f!21Xud(x)ueg(f)d(x). ~4!

The Boltzmann factorX5e22bJx determines the width of the
PDF, and the Lagrange multiplierg(f) maintains the mean
step height at anx-independent value,̂d(x)&5tanf, where
f is the overall angle between the interface and thex axis.
The Lagrange multiplier is given by

eg(f)5
~11X2!tanf1@~12X2!2tan2f14X2#1/2

2X~11tanf!
. ~5!

The partition function for the step heightd(x) is
06611
o

-

nd,
e

Z~f!5 (
d52`

1`

Xudueg(f)d5
12X2

122X coshg~f!1X2
. ~6!

~See details in Refs.@3,5#.! Simple results are obtained fo
f50, which yieldsg(0)50 and

Z~0!5~11X!/~12X!, ~7!

and forf545°, which yields

eg(45°)5~11X2!/2X ~8!

and

Z~45°!52~11X2!/~12X2!. ~9!

For soft dynamics~but not for hard dynamics!, X remains
independent ofH when the system is driven away from equ
librium @3–5#.

The mean spin-class populations,^n( jks)&, are all ob-
tained from the product of the independent PDFs ford(x)
and d(x11). Symmetry ofp@d(x)# under the transforma
tion (x,f,d)→(2x,2f,2d) ensures that ^n( jk2)&
5^n( jk1)& for all j andk. Numerical results illustrating the
breakdown of this up-down symmetry for largeuHu are dis-
cussed in Sec. III B. As discussed in Ref.@3#, calculation of
the individual class populations is straightforward but som
what tedious, especially for nonzerof. The final results are
summarized in Table II.
3-3
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Whenever a spin flips from21 to 11, the corresponding
column of the interface advances by one lattice constan
they direction. Conversely, the column recedes by one lat
constant when a spin flips from11 to 21. The correspond-
ing energy changes are given in the third and fourth colum
of Table I. Since the spin-class populations on both side
the interface are equal in this approximation, the contribut
to the mean velocity in they direction from sites in the
classesjk2 and jk1 becomes

^vy~ jk !&5W„bDE~ jk2 !…2W„bDE~ jk1 !…. ~10!

The results corresponding to the soft Glauber transition pr
abilities used here, Eq.~3!, are listed in the last column o
Table II. The mean propagation velocity perpendicular to
interface becomes

^v'~T,H,f!&5cosf(
j ,k

^n~ jks!&^vy~ jk !&, ~11!

where the sum runs over the classes included in Table
While the general result is cumbersome if written out in d
tail, using the fact thate24bJx5X2 for the soft Glauber dy-
namic @3–5#, we obtain relatively compact formulas for th
special cases off50 andf545°:

^v'~T,H,0!&5XH 1

11X2
1

X

~11X!2~12X2!
F2~112X!

11e4bJy

1
X2

11X2e4bJy
G J tanh~bH ! ~12!

and

^v'~T,H,45°!&5H 1

2
1

2X2

~11X2!2
1

1

12X4 F112X213X4

11e4bJy

1
X4

11X2e4bJy
G J tanh~bH !

2A2
. ~13!

III. COMPARISON WITH MONTE CARLO SIMULATIONS

We have compared the analytical estimates of the pro
gation velocities and spin-class populations developed ab
with MC simulations of the same model forJx5Jy5J. The
details of our implementation of the discrete-timen-fold way
rejection-free MC algorithm@13# are described in Ref.@3#.
By keeping only the interface sites in memory, the algorith
is not subject to size limitations in they direction, enabling
simulations for arbitrarily long times.

Our numerical results are based on simulations withLx
510 000 andf between 0 and 45° for several temperatu
belowTc . @Tc522J/ ln(A221)'2.269J is the critical tem-
perature for the isotropic, square-lattice Ising model@17#.# In
order to ensure stationarity, we ran the simulation for 10 0
n-fold way updates per updatable spin~UPS! before taking
any measurements, and the results were averaged
200 000 UPS@18#.
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A. Interface velocities

First, we compare the simulated interface velocities w
the analytical approximation, Eq.~11!. Figure 2 shows the
normal velocity versusH for f50 and a range of tempera
tures up toTc . There is excellent agreement between the M
results and the theory for temperatures below 0.8Tc .

The dependence of the normal velocity on the tilt anglef
is shown in Fig. 3 for several values ofH/J between 0.1 and
3.0. At T50.2Tc , the velocity increases withf in agreement

FIG. 2. The average stationary normal interface velocity^v'&
shown vsH for f50. The MC results are shown as data points a
the theoretical predictions as solid curves. From below to above
temperatures areT/Tc50.2, 0.4, 0.6, 0.8, and 1.0.

FIG. 3. The average stationary normal interface velocity^v'&
shown vs tanf for ~from below to above! H/J50.1, 0.5, 1.0, 1.5,
2.0, 2.5, and 3.0. The MC results are shown as data points and
theoretical predictions as solid curves.~a! T50.2Tc . ~b! T
50.6Tc .
3-4
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with the polynuclear growth model@6,19,20# at small angles
and the single-step model for larger angles@6,14,21,22# @Fig.
3~a!#. At T50.6Tc , on the other hand, the velocity is near
isotropic, with a weak increase withf for the strongest fields
@Fig. 3~b!#. For the lowest temperature, the agreement
tween the simulations and the analytical results is excel
everywhere. For the higher temperature, it is also reasona
but better for weak than for strong fields.

The temperature dependence of the normal interface
locity is shown in Fig. 4 for several values ofH/J between
0.1 and 3.0. The agreement between the simulations and
analytical results is excellent except for combinations of h
temperatures and strong fields. In contrast to the results
hard dynamics~see Fig. 5 of Ref.@3# for Ising interfaces and
Fig. 8 of Ref. @5# for SOS interfaces!, the velocity goes to
zero atT50 for all values ofH, not just forH/J,2. This
result agrees with our finding for the SOS model with s
dynamics@4#. As predicted by the theoretical results in Re
@3#, there is thusno discontinuity in the interface velocity a
T50 andH/J52 for soft dynamics.

B. Spin-class populations and skewness

A closer look at the performance of the mean-field a
proximation for the interface structure is provided by t
mean spin-class populations. The analytical predictions
the class populations are based on the assumption that d
ent steps are statistically independent. A comparison of
simulation results with the analytical predictions therefo
gives a way of testing this assumption.

The ten mean class populations that have nonzero p
lations in the SOS approximation,̂n(01s)&, ^n(11s)&,
^n(10s)&, ^n(21s)&, and ^n(20s)& with s561 are shown
versusH in Fig. 5~a! for f50 andT50.6Tc . Filled symbols
represents511, while empty symbols~almost completely
hidden behind the corresponding filled symbols! represents
521. The class populations are practically independen
H, in agreement with the theoretical prediction for the s
dynamic @3,4#, and in contrast to the result for the Isin
model with hard Glauber dynamics~see Fig. 7~a! of Ref.
@3#!. Deviations from the SOS approximation are indicat

FIG. 4. The average stationary normal interface velocity^v'&
shown vsT at f50 for ~from below to above! H/J50.1, 0.5, 1.0,
1.5, 2.0, 2.5, and 3.0. The MC results are shown as data points
the theoretical predictions as solid curves.
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by the nonzero populations in the classes with two brokey
bonds,̂ n(12s)&, ^n(22s)&, and^n(02s)&, which are shown
in Fig. 5~b!. These populations are only of the order of 1023,
about two orders of magnitude less than for the hard Glau
dynamic~see Fig. 7~b! of Ref. @3#!, and they show significan
differences between the two spin values~see below!. Figure
5~c! shows the combined populations in classes with o

nd

FIG. 5. Mean stationary class populations^n( jks)& shown vsH
at f50 and T50.6Tc . Solid lines correspond to the theoretic
predictions, while filled symbols denotes511 and empty symbols
~in most cases hidden by the corresponding filled symbols! denote
s521. ~a! The ten SOS-compatible classes, from top to bott
01s, 11s, 10s, 21s, and 20s. ~b! The six classes with two brokeny
bonds, which have zero populations in the SOS approximation,s
~triangles!, 22s ~squares!, and 02s ~diamonds!. ~c! From above to
below are shown the aggregate populations of classes with ones
and 10s), two (11s, 20s, and 02s), three (21s and 12s), and four
(22s) broken bonds.
3-5
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two, three, and four broken bonds, respectively. The res
are dominated by the SOS-compatible classes and s
good agreement between simulations and theory.

The skewness between the spin populations on the lea
and trailing edges of the interface are a consequence of s
range correlations between neighboring steps, and it is q
commonly observed in driven interfaces. This is the ca
even when thelong-rangecorrelations vanish as they do fo
interfaces in the Kardar-Parisi-Zhang~KPZ! dynamic univer-
sality class @1,23#, to which the present model belong
Skewness has also been observed in several other SOS
models@24–26#. The correlations associated with the ske
ness generally lead to a broadening of protrusions on
leading edge~‘‘hilltops’’ !, while those on the trailing edg
~‘‘valley bottoms’’! are sharpened@24#, or the other way
around@26#. In terms of spin-class populations, the form
corresponds to ^n(212)&.^n(211)& and ^n(111)&
.^n(112)&. The relative skewness can therefore be qua
fied by the two functions

r5
^n~212 !&2^n~211 !&

^n~212 !&1^n~211 !&
, ~14!

introduced by Neergaard and den Nijs@24#, and

e5
^n~111 !&2^n~112 !&

^n~111 !&1^n~112 !&
. ~15!

These two skewness parameters for the current system
shown together versusH in Fig. 6~a!. The skewness is very
weak, but it is not zero in contrast to the SOS model w
soft Glauber dynamic@4#. Both these skewness paramete
have the opposite sign and are about two orders of ma
tude smaller than in the Ising model with the hard Glau
dynamic@3# @Fig. 6~b!# and in the SOS model with the sam
hard dynamic@5# @Fig. 6~c!#.

The skewness parametersr ande depend on spin classe
that have nonzero populations in the SOS picture, and t
can therefore be applied to both Ising and SOS interfaces
the Ising case, however, much more pronounced differen
are seen in the populations of those classes that are not p
lated in the SOS model@see Fig. 5~b!#. For Ising models,
these classes can be used to define further skewness p
eters, such as

k5
^n~222 !&2^n~221 !&

^n~222 !&1^n~221 !&
. ~16!

Here class 222 represents isolated bubbles of the metasta
phase that persist as a ‘‘wake’’ behind the moving interfa
while 221 corresponds to a ‘‘bow wave’’ of bubbles of th
stable phase in front of the interface, which are created
pinching-off of protrusions. Although the total density
such bubbles is about two orders of magnitude smaller w
the soft dynamic studied here than with hard dynamics~com-
pare Fig. 5~b! with Fig. 7~b! of Ref. @3#!, the relative asym-
metry parametersk are comparable, as shown in Fig. 7. N
surprisingly, for strong fields the entire bubble population
found in the wake, yieldingk&1 in this limit.
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IV. CONCLUSION

In this paper, we have continued our study of the dep
dence of the local structure of driven interfaces on the
plied field and temperature and on the form of the stocha
dynamics under which they move@3–5#. The local interface
structure is of interest because it is this, rather than the la

FIG. 6. The two relative skewness parametersr ~triangles! and
e ~squares!, defined in Eqs.~14! and~15!, respectively shown vsH
for f50 at T50.6Tc . ~a! The skewness parameters multiplied b
100 for the Ising model with soft Glauber dynamics, discussed
this paper.~b! The skewness parameters~no multiplication! for the
Ising model with hard Glauber dynamics, discussed in Ref.@3#. ~c!
The skewness parameters~no multiplication! for the SOS model
with hard Glauber dynamics, from Ref.@5#. Note the different sign
and the scale difference of two orders of magnitude between
soft dynamic shown in~a! and the hard dynamics shown in~b! and
~c!.
3-6
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scale scaling behavior, which determines such important
terface properties as mobility and chemical reactivity. In p
ticular, we studied the differences between interfaces mov
under soft stochastic dynamics, in which the influences
changes in the field energy and the interaction energy fac
ize in the transition probabilities, andhard dynamics, which
do not possess such a factorization property.

We find that the results for the Ising model with the s
Glauber dynamic, which is the main topic of this study, diff
relatively little from the SOS model with soft dynamics stu
ied in Ref. @4#. In particular, the local interface width doe
not diverge with increasingH, as it does for both the Ising
@3# and SOS@5# models with hard dynamics. As a result, th
soft dynamics do not produce the discontinuity in the int
face velocity atH/J52 andT50 that is seen for hard dy
namics. The main qualitative difference between the Is
and SOS models with soft dynamics is that the interfa

FIG. 7. The relative skewness parameterk shown vsH for f
50 at T50.6Tc . It measures the asymmetry between the popu
tions of bubbles behind and in front of the Ising interface.
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skewness for the Ising model in nonzero field is not exac
zero, as it is for the SOS model. However, the skewn
parametersr and e, which are based on SOS-compatib
spin classes, are about two orders of magnitude smaller
have the opposite sign than what is seen for the hard dyn
ics. In contrast, the relative asymmetry in the populations
bubbles behind and in front of the interface~which do not
occur in SOS models! can be expressed by the skewne
parameterk and is comparable for the two dynamics. How
ever, theabsolutebubble density is about two orders of ma
nitude smaller with the soft dynamics than with the ha
dynamics. Although a successful mean-field theory for
interface mobility of different models and under differe
stochastic dynamics was developed in Refs.@3,5#, a compa-
rable theory that predicts the skewness is still not availab

Two important conclusions can be drawn from our stu
ies. First, the strong differences between hard and soft
namics make it evident that great care must be taken in
mulating and interpreting stochastic models of dynam
systems. Second, experimental observation of the field
temperature dependences of interface mobility and local
terface structure could contribute significantly in devisi
correct stochastic models of nonequilibrium physical ph
nomena.
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